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A Non-parametric Sparse BRDF Model
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Fig. 1. shows an overview of the proposed framework for learning accurate representations and sparse data-driven BRDF models through analysis of the
space of BRDFs. The BRDF dictionary ensemble is trained once and can accurately represent a wide range of previously unseen materials.

Accurate modeling of measured material properties described by the bidi-
rectional reflectance distribution function (BRDF) is a key component in
photo-realistic and physically-based rendering. Current data-driven models
are based on either analytical basis functions or tensor decompositions. An-
alytical representations are usually efficient in terms of memory footprint
and computational complexity but typically lead to larger approximation
errors. Most decomposition methods operate on individual BRDFs and come
at a larger computational cost and require larger number of coefficients to
achieve high quality results.

This paper presents a novel non-parametric BRDF model derived using
a machine learning approach to explore the space of possible BRDFs and
to span this space with a set of sub-spaces, or dictionaries. By training the
dictionaries under sparsity constraints, the model guarantees high quality
representations with minimal storage requirements and an inherent clus-
tering of the BDRF-space. The model can be trained once and then reused
to represent a wide variety of measured BRDFs. Moreover, the proposed
method is robust to BRDF transformations, and is flexible to incorporate
new unseen data sets, parameterizations, and transformations. The proposed
sparse BRDF model is evaluated using the MERL, DTU and RGL-EPFL BRDF
databases. Experimental results show that the proposed approach results
in about 9.7dB higher SNR on average for rendered images as compared to
current state-of-the-art models.

CCS Concepts: • Computing methodologies → Reflectance modeling;
Machine learning approaches.

Additional Key Words and Phrases: Rendering, Reflectance and shading
models
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1 INTRODUCTION
The bidirectional reflectance distribution function [Nicodemus et al.
1992] describes how light scatters at the surfaces of a scene, depend-
ing on their material characteristics. The BRDF is a 4D function
parameterized by the incident and exitant scattering angles and
can be described using either parametric models [Ashikhmin and
Shirley 2000; Blinn 1977; Cook and Torrance 1982; Löw et al. 2012;
Walter et al. 2007] or data-driven models [Bagher et al. 2016; Bilgili
et al. 2011; Lawrence et al. 2004; Tongbuasirilai et al. 2019]. Para-
metric models present great artistic freedom and the possibility to
interactively tweak parameters to achieve the desired look and feel.
However, most analytical models are not designed for efficient and
accurate representation of the scattering properties of measured
real-world materials. Data-driven models on the other hand enable
the use of measured BRDFs and real-world materials directly in
the rendering pipeline, and are commonly used in computer vision
applications [Romeiro et al. 2008]. Here we will focus on data-driven
models and learning accurate representations describing the space
of possible BRDFs.

Data-driven models can represent BRDFs in many different ways.
Iterative-factored representations approximate BRDFs with multiple
low-rank components [Bilgili et al. 2011; Lawrence et al. 2004; Tong-
buasirilai et al. 2019], while hybrid analytical data-driven models
[Bagher et al. 2016; Sun et al. 2018] rely on non-parametric com-
ponents or basis functions computed using specific weighting and
optimization schemes.

The efficiency, or performance, of a non-parametric model is typ-
ically measured in terms of the number of variables/coefficients
required to represent a BRDF at a given quality and the efficacy of
the underlying basis representation. Most, if not all, existing meth-
ods either sacrifice themodel accuracy to achieve fast reconstruction
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for real-time applications, or aim for high image fidelity leading
to increasing storage and computational requirements. Another
important aspect is the complexity of the basis functions used in
the representation. At one end of the spectrum, we have analytical
basis functions such as spherical harmonics and wavelets [Claus-
tres et al. 2003; Ramamoorthi and Hanrahan 2001], which provide
compact and computationally efficient representations but suffer
from low approximation accuracy. On the other end, we have de-
composition based methods [Bilgili et al. 2011] that model the BRDF
as a multiplication of a set of coefficients and a basis matrix/tensor
computed from data. Unfortunately, these approaches require a
computationally expensive decomposition, e.g. PCA or SVD, for
each BRDF individually and suffer from a high storage cost for the
basis itself. Another problem is that the expressiveness of existing
bases/decomposition methods is limited. Except for a few, they are
in most cases also not designed for BRDF data, hence requiring high
numbers of coefficients for accurate BRDF representation.

The goal in this paper is to develop a new data-driven BRDFmodel
that enables high accuracy representation with a minimal number
of coefficients, as well as a basis representation that can be trained
once and is expressive enough to represent any BRDF. To solve this
challenge, we derive a model that in essence relies on decomposing
BRDFs into a coefficient – basis pair but uses machine learning to
adapt the basis to the space of BRDFs and minimize its memory foot-
print while providing maximally sparse coefficients. Sparse BRDF
modeling is achieved using a novel BRDF dictionary ensemble and a
novel model selection algorithm to efficiently represent a wide range
of real-world materials. The learned dictionary ensemble consists
of a set of basis functions trained such that they guarantee a very
sparse BRDF representation and near optimal signal reconstruc-
tion. Moreover, our model takes into account the multidimensional
structure of measured BRDFs (e.g. 3D or 4D depending on the pa-
rameterization) and can exploit the information redundancy in the
entire BRDF space to reduce the number of coefficients.
The learned ensemble is versatile and can be trained only once

to be reused for representing a wide range of previously unseen
materials. Additionally, the dictionary ensemble is not restricted to
a single BRDF transformation as previous models. Instead multiple
BRDF transformations can be included in the ensemble training,
such that for each individual BRDF, the best representation can be
selected automatically and used. We also develop a novel model
selection method to pick a dictionary in the ensemble that leads to
the sparsest solution, the smallest reconstruction error, and the most
suitable transformation with respect to rendering quality. For the
experiments and evaluations presented here, we use the MERL [Ma-
tusik et al. 2003] and RGL-EPFL [Dupuy and Jakob 2018] databases,
which are divided into a training set and a test set used for evalua-
tion. The main contributions of this paper can be summarized as
follows:

• A novel non-parametric BRDF model using sparse representa-
tions that significantly outperforms existing decomposition-
basedmethodswith respect to bothmodel error and rendering
quality.

• A multidimensional dictionary ensemble learning method
tailored to measured BRDFs.

• A novel BRDF model selection method that chooses the best
dictionary for efficient BRDF modeling, as well as the most
suitable BRDF normalization function. This enables a unified
non-parametric BRDF model regardless of the characteristics
of the material.

We compare the proposed non-parametric BRDF to current state-
of-the-art models and demonstrate that it performs significantly
better in terms of both rendering SNR and visual quality. To the
authors’ knowledge this is the first BRDF model based on sparse
representations and dictionary learning.
Notations- Throughout the paper, we use the following notational
convention. Vectors and matrices are denoted by boldface lower-
case (a) and bold-face upper-case letters (A), respectively. Tensors
are denoted by calligraphic letters, e.g.A. A finite set of objects is

indexed by superscripts, e.g.
{
A(𝑖)

}𝑁
𝑖=1

, whereas individual elements
of a, A, andA are denoted a𝑖 , A𝑖1,𝑖2 ,A𝑖1,...,𝑖𝑛 , respectively. The ℓ𝑝
norm of a vector s, for 1 ≤ 𝑝 ≤ ∞, is denoted by ∥s∥𝑝 . Frobenius
norm is denoted ∥s∥𝐹 . The ℓ0 pseudo-norm of this vector, ∥s∥0,
defines the number of non-zero elements.

2 BACKGROUND AND RELATED WORK
Measured BRDFs have proven to be an important tool in achieving
photo-realism during rendering [Dong et al. 2016; Dupuy and Jakob
2018; Matusik et al. 2003]. Even highly-complex surfaces such as
layered materials require multiple components of measured data
to construct novel complex materials [Jakob et al. 2014]. Measured
materials, however, are high-dimensional signals with large memory
footprint and a key challenge is that small approximation errors
can lead to visual artifacts during rendering. To efficiently represent
such high-dimensional measured BRDF data, one can use parametric
models, or data-driven models, since densely-sampled BRDF data
imposes a large memory footprint, making it impractical to use in
many applications.
Parametric models. By careful modeling, BRDFs can be encoded
with only a few parameters. The components or factors of such
models are based on either assumptions describing by the physics
of light – surface interactions using e.g. microfact theory [Cook
and Torrance 1982; Holzschuch and Pacanowski 2017; Walter et al.
2007], or empirical observations of BRDF behaviors [Ashikhmin
and Shirley 2000; Blinn 1977; Löw et al. 2012; Ward 1992]. However,
in many practical cases and applications, parametric models cannot
accurately fit measured real-world data [Bagher et al. 2016].
Data-driven models. Due to their non-parametric property, data-
driven models are superior to parametric models in that the number
of degrees of freedom, or implicit model parameters, is much higher.
This means that the representative power is higher and the expected
approximation error is lower. Factored BRDF models use decom-
position techniques to factorize BRDF into several components.
Matrix and tensor decompositions have been used by Lawrence
et al. [2004], Bilgili et al. [2011], and Tongbuasirilai et al. [2019].
Moreover, factored-based models for interactive BRDF editing have
been presented in [Ben-Artzi et al. 2006; Kautz and McCool 1999].
A problem with existing factored models is that rank-1 approxi-

mations in most cases lead to inferior results. Accurate modeling
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requires iterative solutions withmany layered factors. Analytic-data-
driven BRDF models [Bagher et al. 2016; Sun et al. 2018] employ
analytical models extended to higher number of parameters fitted
with measured data to acheive higher accuracy. The recent advance-
ment of machine learning algorithms, in particular deep learning,
brings new research paths on BRDF-related topics [Dong 2019].
Deep learning has been used for BRDF editing [Hu et al. 2020] and
BRDF acquisition [Deschaintre et al. 2018, 2019; Li et al. 2018]. To
the best of our knowledge, deep learning has not been applied to
BRDF modeling.
Dictionary Learning. One of the most commonly used dictionary
learning methods is K-SVD [Aharon et al. 2006], and its many vari-
ants [Marsousi et al. 2014; Mazhar and Gader 2008; Mukherjee et al.
2016; Rusu and Dumitrescu 2012], where a 1D signal (i.e. a vector) is
represented as a linear combination of a set of basis vectors, called
atoms. A clear disadvantage of K-SVD for BRDF representation is sig-
nal dimensionality. For instance, a measured BRDF in the MERL data
set, excluding the spectral information, is a 90×90×180 = 1, 458, 000
dimensional vector. In practice, the number of data points needed
for K-SVD dictionary training should be a multitude of the signal
dimensionality to achieve a high quality dictionary. In addition to
unfeasible computational power required for training, the limited
number of available measured BRDF data sets renders the utilization
of K-SVD impractical.

In contrast to 1D dictionary learning methods, multidimensional
dictionary learning has received only little attention in the literature
[Ding et al. 2017; Hawe et al. 2013; Roemer et al. 2014]. In multidi-
mensional dictionary learning, a data point is treated as a tensor,
and a dictionary is trained along each mode. For instance, given
our example above, instead of training one 1, 458, 000 dimensional
dictionary for the MERL data set, one can train three dictionaries (i.e.
one for each mode), where the atom size for these dictionaries are
90, 90 and 180, corresponding to the dimensionality of each mode.
To the best of our knowledge, there exists only a few multidimen-
sional dictionary learning algorithms. Our sparse BRDF model in
this paper is inspired by the multidimensional dictionary ensemble
training proposed in [Miandji et al. 2019], which has been shown
to perform well for high dimensional signals such as light fields
and light field videos. We will elaborate on our training scheme for
BRDFs in Section 3.2.

3 SPARSE DATA DRIVEN BRDF MODEL
Our non-parametric model is based on learning a set of multidi-
mensional dictionaries, a dictionary ensemble, spanning the space
of BRDFs, i.e. the space in which each BRDF is a single multi-
dimensional point. Each dictionary in the ensemble consists of a
set of basis functions, representing each dimension of the BRDF
space, that admit sparse representation of any measured BRDF using
only a small number of coefficients as illustrated in Figure 1. The
dictionary ensemble is trained only once on a given training set of
measured BRDFs and can then be reused to represent a wide range
of different BRDFs. This is in contrast to previous models that use
tensor or matrix decomposition techniques, where the basis and the
coefficients are calculated for each BRDF individually.

A major challenge when using machine learning methods, and in
particular dictionary learning, on BRDFs is the high dynamic range
inherent to the data. In Section 3.1, we describe two data transfor-
mations that when applied on measured BRDFs, they improve the
fitting to our non-parametric model, see Section 4. The training of
the multidimensional dictionaries is described in sections 3.2 and
3.3, followed by our model selection technique in Section 3.4, where
we describe a method to select the most suitable dictionary (among
the ensemble of dictionaries) for any unseen BRDF such that the
coefficients are maximally sparse, the modeling error is minimal,
and that the data transformation used is one that leads to a better
rendering quality.

A BRDF can be parameterized in many different ways [Barla et al.
2015; Löw et al. 2012; Rusinkiewicz 1998; Stark et al. 2005]. Our
dictionary learning approach does not rely on the parameterization
of given BRDFs as long as the resolution of these BRDFs is the
same. For simplicity, all the data sets we use here are based on the
Rusinkiewicz’s parameterization [Rusinkiewicz 1998] at a resolution
of 90 × 90 × 180.

3.1 BRDF data transformation
Measured BRDF tensors often exhibit a very high dynamic range,
which introduces many difficulties during parameter fitting and
optimization. It is therefore necessary to apply a transformation
of the BRDF values using e.g. a log-mapping as suggested by [Löw
et al. 2012; Tongbuasirilai et al. 2019] and [Nielsen et al. 2015; Sun
et al. 2018]. In this paper we use two data transformation functions
to improve the performance of our model during training and test-
ing. The first transformation is based on log-plus transformation
proposed by Löw et al., [Löw et al. 2012]:

𝜌𝑡1 (𝜔ℎ, 𝜔𝑑 ) = 𝑙𝑜𝑔(𝜌 (𝜔ℎ, 𝜔𝑑 ) + 1) (1)

where 𝜌 is the original BRDF value, and 𝜌𝑡1 is the transformed
BRDF value. For the second transformation, we use the log-relative
mapping proposed by Nielsen et al. [Nielsen et al. 2015]; however, we
exclude the denominator. We call this transformation log-plus-cosine
transformation:

𝜌𝑡2 (𝜔ℎ, 𝜔𝑑 ) = 𝑙𝑜𝑔(𝜌 (𝜔ℎ, 𝜔𝑑 ) ∗ 𝑐𝑜𝑠𝑀𝑎𝑝 (𝜔ℎ, 𝜔𝑑 ) + 1) (2)

where cosMap() is a function mapping the input (𝜔ℎ, 𝜔𝑑 ) directions
to 𝑐𝑜𝑠 (\𝑖 ) ∗ 𝑐𝑜𝑠 (\𝑜 ) to suppress noise in grazing and near grazing
angles.
Using the proposed non-parametric model, we have conducted

experiments using both transformations, see Table 1. The log-plus
transformation in Equation 1 yields better results when compared
to the log-plus-cosine transformation in Equation 2 for specular
materials. The log-plus-cosine is in most cases a better choice for
diffuse BRDFs.
While we use the two most commonly used BRDF transforma-

tions, our sparse BRDF model is not limited to the choice of the
transformation function. Indeed, given any new such function, the
previously trained dictionary ensemble can be directly applied. How-
ever, to further improve the model accuracy, one can train a small
set of dictionaries given a training set obtained with the new BRDF
transformation. We then add this set to the previously trained en-
semble of dictionaries. The expansion of the dictionary ensemble
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Table 1. SNR of rendered images using the BRDF dictionaries trained with different dictionary sparsity levels: 32, 64, 128, and 256. Each dictionary has two
transformations, 𝜌𝑡1 and 𝜌𝑡2. The test set consists of 15 MERL materials (not included in the training). The bottom row shows the average SNR over the test
set. The underlined numbers are best SNR values for 𝜌𝑡1 and the bold numbers are the best SNR values for 𝜌𝑡2.

Material Ensemble with 𝜏𝑙 = 32 Ensemble with 𝜏𝑙 = 64 Ensemble with 𝜏𝑙 = 128 Ensemble with 𝜏𝑙 = 256
𝜌𝑡1

SNR(dB)
𝜌𝑡2

SNR(dB)
𝜌𝑡1

SNR(dB)
𝜌𝑡2

SNR(dB)
𝜌𝑡1

SNR(dB)
𝜌𝑡2

SNR(dB)
𝜌𝑡1

SNR(dB)
𝜌𝑡2

SNR(dB)
blue-fabric 53.9003 58.4393 57.0890 61.1925 56.7419 62.4704 58.7229 62.9932
blue-metallic-paint 54.8105 56.8017 52.4779 59.7930 54.2249 61.0643 52.5073 60.5738
dark-red-paint 44.1094 51.9677 45.8218 52.4098 48.4695 54.7743 46.3005 54.4020
gold-metallic-paint2 46.9514 38.6907 45.6783 36.0324 46.1956 37.4564 42.4208 41.1227
green-metallic-paint2 50.7108 41.8161 49.4635 39.3023 52.8230 43.0459 49.6811 50.2204
light-red-paint 41.4139 49.0550 43.7449 48.7451 47.7306 52.1905 45.1613 50.6002
pink-fabric2 44.8244 49.3862 48.5446 52.5484 52.6230 53.5701 52.5405 54.4938
purple-paint 43.8932 38.8859 42.2491 47.5648 48.2735 48.7324 45.3798 47.1568
red-fabric 47.5606 52.3038 50.9287 54.7831 53.9668 56.7085 55.3687 58.5863
red-metallic-paint 47.2351 40.3386 46.9943 38.4251 49.1860 42.1207 48.6971 42.6229
silver-metallic-paint2 40.3291 42.9256 44.0442 43.2292 44.0323 46.8208 46.4961 44.1504
specular-green-phenolic 48.4841 41.6432 47.3226 36.5157 49.4785 48.8586 49.2522 45.9519
specular-violet-phenolic 48.2384 42.7994 47.4994 37.9801 47.4863 44.5840 48.3638 41.3332
specular-yellow-phenolic 46.4907 39.1758 44.5259 36.1666 45.4146 35.4231 43.1846 36.4720
violet-acrylic 48.7179 44.0610 48.7112 38.9536 47.6828 42.0749 48.1322 36.7368

Average 47.1779 45.8860 47.6730 45.5761 49.6219 48.6596 48.8139 48.4944

is a unique characteristic of our model. We utilize this property in
Section 3.3 to combine different sets of dictionaries, each trained
with a distinct training sparsity. The same approach can be used
here for improving the model accuracy when a new measured BRDF
data set, that requires a more sophisticated transformation, is given.

3.2 Multidimensional dictionary learning for BRDFs
To build the non-paramatric BRDF model, we seek to accurately
model the space of BRDFs using basis functions leading to a high
degree of sparsity for the coefficients while maintaining the visual
fidelity of each BRDF in the training set. To achive this, the training
algorithm needs to take into account the multidimensional nature
of BRDF objects, typically 3D or 4D, depending on the parameteri-
zation. Let {X (𝑖) }𝑁

𝑖=1 be a set of 𝑁 BRDFs, where X ∈ R𝑚1×𝑚2×𝑚3 .
Here we do not assume any specific parameterization and only
require that all the BRDFs in {X (𝑖) }𝑁

𝑖=1 have the same resolution.
Moreover, as discussed in Section 3.1, we utilize two BRDF trans-
formations, 𝜌𝑡1 and 𝜌𝑡2. As a result, the training set consists of two
versions of each BRDF. In other words, the dictionary ensemble is
trained on both transformations only once.

To achieve a sparse three-dimensional representation of {X (𝑖) }𝑁
𝑖=1,

we train an ensemble of 𝐾 three-dimensional dictionaries, denoted
{U(1,𝑘) ,U(2,𝑘) ,U(3,𝑘) }𝐾

𝑘=1, such that each BRDF, X (𝑖) , can be de-
composed as

X
(𝑖) = S

(𝑖) ×1 U(1,𝑘) ×2 U(2,𝑘) ×3 U(3,𝑘) , (3)

where U(1,𝑘) ∈ R𝑚1×𝑚1 , U(2,𝑘) ∈ R𝑚2×𝑚2 , U(3,𝑘) ∈ R𝑚3×𝑚3 , and
𝑘 ∈ {1, . . . , 𝐾}. Moreover, we have ∥S (𝑖) ∥0 ≤ 𝜏 , where 𝜏 is a user-
defined sparsity parameter. It is evident from (3) that each BRDF
is represented using one dictionary in the ensemble, in this case
{U(1,𝑘) ,U(2,𝑘) ,U(3,𝑘) }.

The ensemble training is performed by solving the following
optimization problem

min
U( 𝑗,𝑘 ) ,S (𝑖,𝑘 ) ,M𝑖,𝑘

𝑁∑
𝑖=1

𝐾∑
𝑘=1

M𝑖,𝑘

X (𝑖)−

S
(𝑖,𝑘) ×1 U(1,𝑘) ×2 U(2,𝑘) ×3 U(3,𝑘)

2
𝐹

(4a)

subject to(
U( 𝑗,𝑘)

)𝑇
U( 𝑗,𝑘) = I, ∀𝑘 = 1, . . . , 𝐾, ∀𝑗 = 1, . . . , 3, (4b)S (𝑖,𝑘)


0
≤ 𝜏𝑙 , (4c)

𝐾∑
𝑘=1

M𝑖,𝑘 = 1, ∀𝑖 = 1, . . . , 𝑁 , (4d)

where the matrixM ∈ R𝑁×𝐾 is a clustering matrix associating each
BRDF in the training set to one multidimensional dictionary in the
ensemble; moreover, Equation (4b) ensures the orthogonality of the
dictionary, that the sparsity of the coefficients is enforced by (4c),
and that the representation of each BRDF with one dictionary is
achieved by (4c). The user-defined parameter 𝜏𝑙 defines the training
sparsity. It should be noted that the clustering matrix M divides the
BRDFs in the training set into a set of clusters such that optimal
sparse representation is achieved with respect to the number of
model parameters (or coefficients) and the representation error.
This clustering is an integral part of our model and improves the
accuracy of BRDF representations.
Our sparse BRDF modeling is inspired by the Aggregate Multi-

dimensional Dictionary Ensemble (AMDE) proposed by Miandji et
al. [Miandji et al. 2019]. However we do not perform pre-clustering
of data points, in this case BRDFs, for the following two reasons:
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First, the number of existing measured BRDF data sets is very lim-
ited. Hence, if we apply pre-clustering, the number of available
BRDFs to train a dictionary ensemble becomes inadequate. Sec-
ond, since we use each BRDF as a data point, the size of each data
point is 90 ∗ 90 ∗ 180 = 1458000, hence rendering the proposed
pre-clustering method in [Miandji et al. 2019] impractical. Indeed,
the two BRDF transformations discussed in Section 3.1 can be seen
as a pre-clustering of the training set. These transformations divide
the training set into diffuse and glossy BRDFs. Moreover, as it will
be described in Section 3.3, and unlike the method of Miandji et
al. [Miandji et al. 2019], we perform multiple trainings of the same
training set but with a different training sparsity 𝜏𝑙 . The obtained
ensembles are combined to form an ensemble that can efficiently
represent BRDFs with less reconstruction error.

3.3 BRDF Dictionary ensemble with multiple sparsities
Measured BRDFs exhibit a variable degree of sparsity. Indeed given a
suitable dictionary, a diffusematerial requires only a small number of
coefficients while a highly glossy BRDF needs a significantly higher
number of coefficients for an accurate representation. This phenom-
enon has been observed by previous work on non-parametric mod-
eling of BRDFs based on factorization or using commonly known
basis functions such as spherical harmonics [Lawrence et al. 2004;
Nielsen et al. 2015; Sun et al. 2018; Tunwattanapong et al. 2013]. A
shortcoming of the dictionary ensemble learning method described
in Section 3.2 is that we do not take into account the intrinsic spar-
sity of various materials in the training set. In other words, since
the training sparsity 𝜏𝑙 is fixed for all the BRDFs in the training set,
a small values for 𝜏𝑙 will steer the optimization algorithm to more
efficiently model low frequency (or diffuse-like) materials, while
neglecting high frequency materials. Indeed if a large value for 𝜏𝑙
is used, the opposite happens, leading to degradation of quality for
diffuse materials due to over-fitting.
In Table 1, we present rendering SNR results obtained from en-

sembles trained with different values for the training sparsity, 𝜏𝑙 ; in
particular, we use four ensembles with 𝜏𝑙 = 32, 𝜏𝑙 = 64, 𝜏𝑙 = 128, and
𝜏𝑙 = 256. Note that the set of 15 materials we consider here were
not used in the training set, which consists of 85 materials from the
MERL data set. As it can be seen, there is a relatively large gap in
SNR for each material when we compare different ensembles, e.g.
for 𝜏𝑙 = 32 and 𝜏𝑙 = 256. Moreover, we also observe that most BRDFs
in this set favor ensembles trained with 𝜏𝑙 = 128 and 𝜏𝑙 = 256. This
is because we set the testing sparsity to 𝜏𝑡 = 262, see Section 3.4
for the definition of the testing sparsity. The relation between the
training and testing sparsity is analyzed in [Miandji et al. 2019].
To address the problem mentioned above, we train multiple en-

sembles of dictionaries, each with a different value for 𝜏𝑙 , so that
we can model both low and high frequency details of the training
BRDFs more efficiently, while lowering the risk of over-fitting. After
training each ensemble according to the method described in Sec-
tion 3.2, we combine them all to form one ensemble that includes
all the dictionaries. In this paper, we train 4 ensembles, each with
8 dictionaries, which are trained with 𝜏𝑙 = 32, 𝜏𝑙 = 64, 𝜏𝑙 = 128,
and 𝜏𝑙 = 256; hence, the final ensemble consists of 32 dictionaries.
In Section 3.4, we describe our model selection method to find a

dictionary in the combined ensemble that leads to the most sparse
coefficients and the least reconstruction error.

3.4 BRDF model selection
Once the ensemble of dictionaries is trained, the next step is to
use it for the sparse representation of BRDFs. We call this stage
model selection, since out of the dictionaries in the ensemble and the
transformations used on the BRDF, we need to find one dictionary
that leads to the most sparse coefficients with the least error, as
well as the best performing transformation between 𝜌𝑡1 and 𝜌𝑡2.
Indeed, as mentioned in Section 3.1, our method is not limited to
the number of transformations.

We begin by describing our method for selecting the most suitable
dictionary in the ensemble for BRDF reconstruction. This can be
achieved by projecting each BRDF onto all the dictionaries in the
ensemble. The projection step is formulated as

Ŝ
(𝑖,𝑘)

= Y
(𝑖) ×1

(
U(1,𝑘)

)𝑇
×2

(
U(2,𝑘)

)𝑇
×3

(
U(3,𝑘)

)𝑇
, (5)

whereY (𝑖) is a BRDF in the testing set that we like to obtain a sparse
representation of. The smallest components in the coefficient ten-
sors Ŝ (𝑖,𝑘) are progressively nullified until we reach a user defined
sparsity level, called the testing sparsity, 𝜏𝑡 , or when the representa-
tion error becomes larger than a user defined threshold. The testing
sparsity, which defines the model complexity, is different than the
training sparsity 𝜏𝑙 and we typically require 𝜏𝑡 ≥ 𝜏𝑙 . For instance, a
higher value for 𝜏𝑡 is required for glossy materials than for diffuse
to achieve an accurate BRDF representation. However, if storage
cost is important, e.g. for real-time rendering applications, one can
reduce 𝜏𝑡 at the cost of degrading the rendering quality. Indeed, this
provides a trade-off between quality and performance, making our
model flexible enough to be applied in a variety of applications.
After sparsifying Ŝ

(𝑖,𝑘) , ∀𝑘 ∈ {1, . . . , 𝐾}, we pick the dictio-
nary corresponding to the sparsest coefficient tensor Ŝ (𝑖,𝑘) , ∀𝑘 ∈
{1, . . . , 𝐾}. If all the coefficient tensors Ŝ

(𝑖,𝑘) , ∀𝑘 ∈ {1, . . . , 𝐾}
achieve the same sparsity, we pick the dictionary corresponding to
the least reconstruction error. The reconstruction error for a BRDF in
the test set,Y (𝑖) , modeled using a dictionary {U(1,𝑘) ,U(2,𝑘) ,U(3,𝑘) },
𝑘 ∈ {1, . . . , 𝐾}, is simply calculated asY (𝑖) − Ŝ

(𝑖,𝑘) ×1 U(1,𝑘) ×2 U(2,𝑘) ×3 U(3,𝑘)
2
2
. (6)

Because the BRDF dictionary ensemble is trained once and can
be used for the sparse representation of unobserved BRDFs, the
storage cost of the model in Equation 3 is defined by the storage
complexity of the sparse coefficient tensor Ŝ (𝑖) in Equation 5. We
store the nonzero elements in Ŝ

(𝑖) as the tuples of nonzero element
location and value, denoted {𝑙1𝑡 , 𝑙2𝑡 , 𝑙3𝑡 , Ŝ

(𝑖)
𝑙31 ,𝑙

3
2 ,𝑙

3
3
}𝜏𝑡
𝑡=1, where the indices

𝑙1𝑡 , 𝑙2𝑡 , and 𝑙3𝑡 store the location of the 𝑡th nonzero element of Ŝ (𝑖) ,
while the corresponding value is Ŝ (𝑖)

𝑙31 ,𝑙
3
2 ,𝑙

3
3
.

The reconstruction of a given BRDF, Y (𝑖) , using our model is
computed by multiplying the sparse coefficient tensor Ŝ (𝑖,𝑘) , where
𝑘 is the index of the dictionary chosen by themodel selectionmethod
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Table 2. Rendering SNR, Gamma-mapped-MSE, and MSE, obtained using our sparse BRDF model for 𝜌𝑡1 and 𝜌𝑡2. For each quality metric, the best result
between 𝜌𝑡1 and 𝜌𝑡2 is shown by bold numbers. Comparing the chosen transformation based on rendering SNR with Gamma-mapped-MSE and MSE in the
BRDF space, we see that the Gamma-mapped-MSE can well distinguish the suitable transformation for 13 out of 15 materials. It can also be seen that MSE
only selects the correct transformation for 3 out of 15 materials. For results generated using Gamma-mapped-MSE, we set 𝛾 = 2.0.

Material Rendering SNR (dB) Gamma-mapped-MSE MSE
Our 𝜌𝑡1 Our 𝜌𝑡2 Our 𝜌𝑡1 Our 𝜌𝑡2 Our 𝜌𝑡1 Our 𝜌𝑡2

blue-fabric 53.99 62.16 0.0233 0.0038 0.0002 0.0062
blue-metallic-paint 51.65 60.53 0.0448 0.0375 0.0011 0.0317
dark-red-paint 49.16 54.80 0.0616 0.0242 0.0295 0.1209
gold-metallic-paint2 48.29 37.68 0.9248 0.9350 72.0330 38.7850
green-metallic-paint2 57.48 43.36 0.8767 0.8939 31.5660 11.9140
light-red-paint 46.51 51.68 0.0552 0.0312 0.0567 0.1699
pink-fabric2 52.66 52.71 0.0230 0.0125 0.0003 0.0323
purple-paint 45.81 47.24 0.1991 0.1725 2.8225 2.1342
red-fabric 56.26 55.05 0.0177 0.0078 0.0002 0.0172
red-metallic-paint 52.70 42.62 1.2910 1.3086 45.0140 19.3610
silver-metallic-paint2 44.70 44.55 0.0988 0.0895 0.0029 0.1217
specular-green-phenolic 53.09 36.67 0.9889 1.0161 27.1120 14.0560
specular-violet-phenolic 50.51 38.21 0.9722 0.9925 22.4920 14.34100
specular-yellow-phenolic 46.81 36.40 0.9454 0.9686 18.8780 10.6280
violet-acrylic 50.07 42.61 0.7770 0.7849 20.2560 12.7940

described above, with the corresponding dictionary as follows

Ŷ
(𝑖)

= Ŝ
(𝑖,𝑘) ×1 U(1,𝑘) ×2 U(2,𝑘) ×3 U(3,𝑘) . (7)

Thanks to the fact that the coefficient tensor Ŝ (𝑖,𝑘) is sparse, Equa-
tion (7) is computationally tractable even for real-time applications.
Indeed, we can evaluate (7) by only considering nonzero elements
of Ŝ (𝑖,𝑘) .
Since our dictionary is trained with two sets of transformed

BRDFs, i.e. 𝜌𝑡1 and 𝜌𝑡2, we can obtain two reconstructed BRDFs from
an unseen BRDF by employing the algorithm described above. This
still leaves us with the problem of selecting the best reconstructed
BRDF between 𝜌𝑡1 and 𝜌𝑡2. Due to the discrepency between quanti-
tative quality metrics computed over the BRDF space (such as MSE)
and the rendering quality [Bieron and Peers 2020], model selection
is a difficult task for BRDF fitting, as well as learning based methods
such as ours. For instance, log-based metrics [Löw et al. 2012; Sun
et al. 2018] have been used to improve efficiency of fitting measured
BRDFs to parametric functions. Indeed the most reliable technique
is to render a collection of images for all possible variations of the
model and select one that is closest to an image rendered using
the reference BRDF. This approach has been used by Bieron et al.
[Bieron and Peers 2020] for BRDF fitting. To reduce the number of
renderings, multiple BRDF parameter fitting are performed using a
power function with different inputs. The model selection is then
performed by rendering a test scene and choosing the best model
based on image quality metrics.
We propose a model selection approach that does not require

rendering the reconstructed 𝜌𝑡1 and 𝜌𝑡2 BRDFs. From our obser-
vations, we found that using MSE to select the final reconstructed
BRDF from 𝜌𝑡1 and 𝜌𝑡2 does not match a selection method based
rendering quality. To address this problem, we use a Gamma map-
ping function, Γ(𝜌,𝛾) = 𝜌1/𝛾 , on the reference, 𝜌𝑡1, and 𝜌𝑡2, prior to
computing the MSE. We call this error metric Gamma-mapped-MSE.

Note that since the reference BRDF is in linear BRDF domain, i.e. it
is not transformed, we invert 𝜌𝑡1 and 𝜌𝑡2 according to (1) and (2),
respectively, prior to computing the Gamma-mapped-MSE.
In Table 2 we report reconstruction quality measured with ren-

dering SNR, Gamma-mapped-MSE, and MSE for both 𝜌𝑡1 and 𝜌𝑡2.
For these results we used 15 test materials from the MERL data set,
while the remaining 85 materials were used for training. For each
error metric, the best result is highlighted in bold-face characters. It
can be seen that Gamma-mapped-MSE can well distinguish the best
transformation among 𝜌𝑡1 and 𝜌𝑡2 with respect to rendering SNR
for 13 out of 15 materials. The two exceptions are red-fabric and
silver-metallic-paint2. It can also be seen that MSE only selects the
correct transformation for 3 out of 15 materials. To obtain Gamma-
mapped-MSE results we used 𝛾 = 2.0. Indeed, this parameter can
be tuned per-BRDF to further improve our results; however, we
found that fixed value of 𝛾 = 2.0 is adequate to achieve a significant
advantage over previous methods.

4 RESULTS AND DISCUSSION
This section presents an evaluation of the proposed BRDFmodel and
comparisons to the current state-of-the-art models in terms of BRDF
reconstruction error and rendering quality. The rendering results
were generated using PBRT [Pharr and Humphreys 2010] with the
Grace Cathedral environment map. The images were rendered at a
resolution of 512 × 512 pixels using 512 pixel samples in PBRT with
the directlighting surface integrator and 256 infinite light-source
samples.

The BRDF dictionary was trained using materials from the MERL
database [Matusik et al. 2003] and RGL-EPFL isotropic BRDF data-
base [Dupuy and Jakob 2018]. We split the MERL and RGL-EPFL
materials into a training set and a test set. The training set contains
136 materials, where 85 materials are from the MERL dataset and 51
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Table 3. Average, standard deviation, minimum, and maximum rendering SNR values of each BRDF model obtained from 15 materials in the MERL dataset.
None of these materials were included in our training set. Yet, our method significantly outperforms state-of-the-art decomposition based methods, such as
[Bagher et al. 2016], where the basis and coefficients should be computed for each given BRDF (i.e. the training and testing sets are not distinct).

BRDF Model
Average
SNR (dB)

Standard
Deviation

Minimum
SNR (dB)

Maximum
SNR (dB)

Ours, 𝜏𝑡 = 262, (log-plus) 50.65 3.8106 44.70 57.49
Ours, 𝜏𝑡 = 262, (log-plus-cosine) 47.08 8.5939 36.40 62.16
Ours, 𝜏𝑡 = 262, (using Gamma-mapped-MSE) 52.51 4.9752 44.55 62.16
Bagher et al. 42.76 11.6323 27.11 63.88
Bilgili et al. 32.63 5.8724 22.86 43.17
Tongbuasirilai et al.[CPD-PDV rank-1 (L=1)] 33.83 5.5236 22.22 42.71
Tongbuasirilai et al.[CPD-HD rank-1 (L=1)] 32.51 8.4995 22.97 52.27

materials are from the EPFL dataset. The test set contains 28 mate-
rials with 15 materials from the MERL dataset, 8 materials from the
DTU data set [Nielsen et al. 2015] and 5 materials from RGL-EPFL
[Dupuy and Jakob 2018]. The training and test sets cover a wide
range of material classes. None of the materials in the test set appear
in the training set.
Each BRDF color channel is processed independently for the

training and model selection. We use the Rusinkiewicz parameter-
ization [Rusinkiewicz 1998], at a resolution of 90 × 90 × 180, i.e.
we have 𝑚1 = 90, 𝑚2 = 90, and 𝑚3 = 180. For our experiments,
we trained four ensembles, each with 𝐾 = 8 dictionaries and with
training sparsities of 𝜏𝑙 = 32, 𝜏𝑙 = 64, 𝜏𝑙 = 128, and 𝜏𝑙 = 256. We
then construct one ensemble by taking the union of the dictionaries
in the four ensembles that were trained, as described in Section
3.3. The training BRDFs were transformed using log-plus (𝜌𝑡1) and
log-plus-cosine (𝜌𝑡2) functions before starting the training, hence
resulting in 272 materials. Once the ensemble is trained, we use the
model selection algorithm, described in Section 3.4, to obtain the
reconstruction of each BRDF in the test set. Note that for rendering,
we invert equations (2) and (1) to convert the BRDFs to lie in the
original linear domain.
To evaluate our sparse BRDF model, we use two quality met-

rics: Signal-to-Noise Ratio (SNR) that is calculated on the rendered
images (floating-point images) and Relative Absolute Error (RAE),
which computed on linear BRDF values. The RAE is defined as

𝑅𝐴𝐸 =

√√√∑(𝜌𝑟𝑒 𝑓 − 𝜌𝑟𝑒𝑐𝑜𝑛)2∑(𝜌2
𝑟𝑒 𝑓

)
, (8)

where 𝜌𝑟𝑒 𝑓 is the reference BRDF, 𝜌𝑟𝑒𝑐𝑜𝑛 is reconstructed BRDF. The
linear BRDF values are obtained by inverting the transformations
described in Section 3.1 for both the reference and reconstructed
BRDFs. Even though rendering SNR (or PSNR) is used to evaluate
BRDF models in many publications, RAE is very useful to capture
the model accuracy of the entire BRDF space without relying on a
specific rendering setup.
We compare our results to Bagher et al. [2016] (Naive model),

Bilgili et al. [2011] (Tucker decomposition) and Tongbuasirilai et
al. [2019] (rank-1 CPD decomposition with L = 1) on 15 MERL test
materials. The naive model stores (90+90+180+2) = 362 coefficients
per channel, Bligili et al. uses (128+16+16+64+2) = 226 coefficients,
and the CPD decompositions from Tongbuasirilai et al. uses (90 +

90 + 180) = 360 coefficients per channel. Since the Tucker and CPD
methods use an iterative approach, we limit our comparisons to L
= 1, i.e. a single factorization was performed so that the number of
coefficients used for all models were roughly the same. The CPD
method was tested using two different parameterizations: the PDV
[Löw et al. 2012; Tongbuasirilai et al. 2019] and HD [Rusinkiewicz
1998] parameterizations.

To the best of our knowledge, the model of Bagher et al. is the
current state-of-the-art. Since our representation is sparse, we only
store nonzero locations, 1 + 1 + 2 bytes, and values, 8 bytes. Simple
calculations show that by using 𝜏𝑡 = 262 coefficients for our model,
we can match the storage complexity of [Bagher et al. 2016], which
uses 362 coefficients to model each color channel of a BRDF.
For the rendered images, shown in tables 3 and 4, and Fig. 5,

we apply gamma-corrected tone-mapping. The difference images,
also known as false-color, produced by normalizing the error image
of each BRDF and for all models in the range [0,1] and applying
a jet color map using MATLAB. All the difference images display
normalized linear errors multiplied by 10 for visualization.
For a more comprehensive overview of the results, we refer the

reader to the supplementary material which includes a large number
of additional rendering SNR values, error metrics and rendering
results.

4.1 Quantitative evaluations
Table 3 reports Signal-to-Noise Ratio (SNR) statistics for 15 test
materials in the MERL database. The average SNR of our model is
about 8dB, 5dB and 10dB higher for log-plus, log-plus-cosine and the
proposed model selection based on Gamma-mapped-MSE, respec-
tively, when compared to Bagher et al.; moreover, our results show
a smaller standard deviation on SNR. Our model with our proposed
selection method can achieve higher SNR on average compared
to both our model of log-plus and log-plus-cosine. It can also be
seen that the Tucker and CPD methods perform poorly without the
power of iterative terms [Bilgili et al. 2011; Lawrence et al. 2004;
Tongbuasirilai et al. 2019]. Even though our model has lower max-
imum SNR than Bagher et al., our minimum SNR is around 9dB
higher for log-plus-cosine , 17dB higher for log-plus and 18dB higher
for our selection. The lower standard deviation indicates that the
proposed model can represent the MERL materials more faithfully.
Table 4 shows a direct comparison of our model to that of Bagher
et al. for each BRDF in the MERL test set using rendering SNR and

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2021.



799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

8 • Anon. Submission Id: papers_632s1

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

Table 4. Rendering SNR and BRDF-space RAE values obtained with our
BRDF model and that of Bagher et al., on 15 test materials of the MERL
dataset. These materials were not used in our training set. Higher rendering
SNR is highlighted in bold.

Material SNR (dB) RAE
Our Bagher Our Bagher

blue-fabric 62.16 63.88 0.8695 0.3596
blue-metallic-paint 60.53 44.86 0.4287 0.2736
dark-red-paint 54.80 57.89 0.2717 0.4955
gold-metallic-paint2 48.29 29.77 0.0811 0.7007
green-metallic-paint2 57.48 51.04 0.0726 0.4209
light-red-paint 51.68 51.36 0.2583 0.5639
pink-fabric2 52.71 52.44 0.8581 0.3388
purple-paint 47.22 44.29 0.1144 0.4428
red-fabric 55.05 51.44 0.7160 0.4163
red-metallic-paint 52.70 34.06 0.0752 0.7181
silver-metallic-paint2 44.55 27.11 0.6256 0.3626
specular-green-phenolic 53.09 35.69 0.0673 0.6414
specular-violet-phenolic 50.51 37.76 0.0592 0.6592
specular-yellow-phenolic 46.81 28.14 0.0683 0.7370
violet-acrylic 50.07 31.68 0.06536 0.5156

Table 5. Rendering SNR and BRDF-space RAE values obtained with our
BRDF model, on 8 unseen materials from the DTU data set [Nielsen et al.
2015]. The bottom row showsmeans of each column. The last column present
SNR results of our model selection method based on Gamma-mapped-MSE
described in Section 3.4.

Material Our 𝜌𝑡1 Our 𝜌𝑡2 Sel.
SNR (dB) RAE SNR (dB) RAE SNR (dB)

binder-cover 45.70 0.0611 46.12 0.0303 46.12
blue-book 47.24 0.0574 45.07 0.0258 45.07
cardboard 44.72 0.1468 48.90 0.3779 48.90
glossy-red-paper 45.16 0.0436 41.41 0.0288 45.16
green-cloth 51.60 0.1145 51.58 0.7713 51.58
notebook 43.39 0.1838 47.15 0.2805 47.15
painted-metal 46.95 0.0817 51.84 0.1240 51.84
yellow-paper 47.14 0.1289 49.04 0.4873 49.04
Average 46.49 0.1022 47.64 0.2658 48.11

Table 6. Rendering SNR and BRDF-space RAE values obtained with our
BRDF model, on 5 test materials of the RGL-EPFL dataset. The bottom
row shows means of each column. The last column present SNR results of
our model selection method based on Gamma-mapped-MSE described in
Section 3.4.

Material Our 𝜌𝑡1 Our 𝜌𝑡2 Sel.
SNR (dB) RAE SNR (dB) RAE SNR (dB)

acrylic-felt-green-rgb 43.23 0.9922 45.91 0.3104 45.91
cc-amber-citrine-rgb 26.33 0.5394 26.24 0.8420 26.24
ilm-l3-37-dark-green-rgb 38.92 0.9558 43.45 0.6060 43.45
paper-blue-rgb 38.92 0.9871 40.23 0.4416 40.23
vch-dragon-eye-red-rgb 40.48 0.8973 38.16 0.7989 38.16
Average 37.57 0.8744 38.80 0.5998 38.80

(a) Log-plus - 𝜌𝑡1

(b) Log-plus-cosine - 𝜌𝑡2

Fig. 2. BRDF error plots of all test materials from MERL, EPFL, and DTU
data sets when reconstructed with increasing number of coefficients: (a)
Log-plus transformation (𝜌𝑡1) and (b) Log-plus-cosine transformation (𝜌𝑡2).

Table 7. Rendering SNR obtained from reconstructions of our BRDF model
and PCA with 40 coefficients on RGL-EPFL test set.

Material Our 𝜌𝑡1 Our 𝜌𝑡2 PCA
acrylic-felt-green-rgb 39.37 40.65 25.14
cc-amber-citrine-rgb 14.12 19.90 6.46
ilm-l3-37-dark-green-rgb 36.88 40.82 19.12
paper-blue-rgb 27.16 34.19 14.80
vch-dragon-eye-red-rgb 33.20 33.86 13.34

BRDF-space RAE. Here we use our Gamma-mapped-MSE metric
to choose between the transformations. Compared to the model
of Bagher et al., our approach achieves significantly higher visual
quality on 13 out of 15 materials, see Fig. 3.
To demonstrate the robustness of our sparse non-parametric

model for representing unseen BRDFs, we also evaluate it using 8
test samples provided by Neilsen et al. [Nielsen et al. 2015]. Note that
we use the same dictionary described above and that none of the
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Fig. 3. Reconstructions of unseen materials from MERL. The reconstructed BRDFs are modeled using our BRDF models with 𝜏 = 262 coefficients compared to
the model of Bagher et al. [Bagher et al. 2016]. The error images are placed on the right column of each reconstruction. All rendered images have been gamma
corrected for visual representation. The error images have been multiplied by 10.0 for visual comparisons. All images have been rendered using the Grace
Cathedral environment [Debevec 1998] using PBRT [Pharr and Humphreys 2010].

materials from the DTU data set were used in the training set. The
results are summarized in Table 5, where we report rendering SNR
and BRDF-space RAE for 𝜌𝑡1, 𝜌𝑡2, and our model selection based
on Gamma-mapped-MSE. Our BRDF model and selection method
can reproduce the DTU data set with average SNR of more than
48dB. Our model selection algorithm on the DTU test set missed
on 2 out of 8 materials, which are blue-book and green-cloth. Visual
quality examples of the rendered images are presented in Fig. 4. The
difference between 𝜌𝑡1 and 𝜌𝑡2 is evident in this figure. We can see
that 𝜌𝑡1 is favored by glossy materials, while 𝜌𝑡2 is more effective
in modeling low-frequency or diffuse-like materials.

Table 6 shows rendering SNR and BRDF-space RAE values for the
RGL-EPFL test set using both 𝜌𝑡1 and 𝜌𝑡2. The rendering SNR values
of the RGL-EPFL test sets are above 35dB except cc-amber-citrine-rgb
which is mainly due to the rendering noise. Our BRDF model and se-
lection method can efficiently represent the RGL-EPFL data set with
an average SNR of more than 38dB. Our model selection method
on the RGL-EPFL test set missed on 2 out of 5 materials, which are
cc-amber-citrine-rgb and vch-dragon-eye-red-rgb. The SNR values
demonstrate that our data-driven model can accurately represent
and faithfully reconstruct the unseen samples. See the supplemen-
tary materials for rendered images obtained using our model applied
on the RGL-EPFL data set.
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Fig. 4. Reconstructions of unseen materials from Nielsen et al. [Nielsen et al. 2015]. The reconstructed BRDFs are modeled using our BRDF models with
𝜏 = 262 coefficients with log-plus transformation and log-plus-cosine transformation. The error images are placed on the right column of each reconstruction.
All rendered images have been gamma corrected for visual representation. The error images have been multiplied by 10.0 for visual comparisons. All images
have been rendered using the Grace Cathedral environment [Debevec 1998] using PBRT [Pharr and Humphreys 2010].

Our results also confirm the discrepancy between BRDF-space
error metrics (such as RAE) and rendering quality using SNR. For
example, blue-metallic-paint in Table 4, cardboard in Table 5 and
vch-dragon-eye-red-rgb in Table 6 demonstrate how RAE contradicts

the rendering SNR. The lower BRDF-space RAE is, the more accu-
rate the model represents a BRDF. However, a rendered image is
dependent on a variety of additional factors such as geometry of
objects, lighting environment, and viewing position. As a result, the
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BRDF-space RAE and rendering SNR have to be considered together
for the evaluation of a BRDF model.
We also evaluated our BRDF model with fewer coefficients and

compared to the PCA-based method presented in [Nielsen et al.
2015], see Table 7. Indeed our model significantly outperforms PCA.
It should be noted that the PCA dictionary exhibit a very high
storage cost compared to our BRDF dictionary ensemble. The size of
the PCA dictionary is 1458000 × 300 = 437, 400, 000 elements, while
our dictionary consists of (90∗90+90∗90+180∗180)∗32 = 1, 555, 200
elements, i.e. the PCA dictionary is more than 280 times larger.

Figure 2 demonstrates the behavior of our BRDF model for both
𝜌𝑡1 and 𝜌𝑡2 for a large range of coefficients, 𝜏𝑡 , during the model se-
lection phase.We observe that 𝜌𝑡1 exhibits a much higherMSEwhen
compared to 𝜌𝑡2. This is expected since 𝜌𝑡2 is typically chosen by
the model selection algorithm to represent diffuse or low-frequency
BRDFs. In terms of the decline of error with respect to the number
of coefficients, both transformations show a similar behavior.

4.2 Visual results
In Figure 3, we present example renderings of four BRDFs in the
MERL test set modeled using our method and [Bagher et al. 2016].
Our results are obtained using the proposed Gamma-mapped-MSE
for model selection. Figure 4 shows renderings of five test BRDFs
from the DTU data set, where we compare the results of both BRDF
transformations, 𝜌𝑡1 and 𝜌𝑡2, with the reference rendering. For both
figures we used the Grace Cathedral HDRi environment map. In Fig.
4, we observe that the artifacts seen on the cardboard and green-
cloth renderings for log-plus (𝜌𝑡1) do not appear in log-plus-cosine
(𝜌𝑡2) renderings. The log-plus-cosine transformation suppresses the
grazing angle BRDF values. For diffuse materials, this leads to better
visual results and significantly higher rendering SNR. It is evident
from Fig. 3 that the log-plus transformation is better for glossy ma-
terials as the log-plus-cosine transformation leads to color artifacts
for some materials, e.g. gold-metallic-paint2, red-metallic-paint, and
violet-acrylic. More results for further analysis is available in the
supplementary material.
In Figure 5, we evaluate our BRDF model using the Princeton

scenewith the followingmaterials: blue-metallic-paint, gold-metallic-
paint2, pink-fabric2, silver-metallic-paint2, and specular-yellow-phenolic.
We rendered the scenewith path tracing in PBRT [Pharr andHumphreys
2010] using the uffizi environment map and with 217 samples-per-
pixel. Figures 5(a) and 5(c) present rendered images from our model
and Bagher et al., respectively. Our model achieves an 8.03dB ad-
vantage in SNR over the model of Bagher et al.

5 CONCLUSION AND FUTURE WORK
This paper presented a novel non-parametric sparse BRDF model
in which a measured BRDF is represented using a trained multidi-
mensional dictionary ensemble and a set of sparse coefficients. We
showed that with careful model selection over the space of mul-
tidimensional dictionaries and various BRDF transformations, we
achieve significantly higher rendering quality and model accuracy
compared to current state-of-the-art. We evaluated the performance
of our model and algorithm using three different data sets, MERL,
RGL-EPFL, and one provided by Nielsen et al. [2015]. For the vast

(a) Ours, SNR = 32.95dB (b) difference

(c) Bagher et al. SNR = 24.92dB (d) difference

(e) reference

Fig. 5. Renderings of the Princeton scene using (a) our BRDF model and (c)
the model of Bagher et al. All images were rendered at 131072 samples/pixel
using the path tracing algorithm of PBRT.

majority of the BRDFs used in the test set we achieve a significant
advantage over previous models.
In the future, we aim to extend our sparse BRDF model to effi-

ciently represent anisotropic materials. Moreover, we acknowledge
the fact that the discrepancy between BRDF-space error metrics and
the rendering quality is still an open problem. Although we showed
significant improvements using our Gamma-mapped-MSE, we be-
lieve that a more sophisticated metric that takes into account the
support of the BRDF function can improve our results. Our model is
relatively robust to noise. However, we believe that an application
of a denoising pass that is tailored to measured BRDFs, prior to
training and model selection, can greatly improve our results. This
is expected since it is well-known that even a moderate amount of
noise in measured BRDFs translates to lower rendering quality; and
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that noise reduces the sparsity of the representation, hence increas-
ing the model complexity. An alternative to applying a denoiser is to
modify the training and model selection methods to be noise-aware.
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