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A. Loss formulation

In order to make this document more self-contained, we
start by listing the different regularization loss formulations
that we consider. The total loss is:

L= (1 - a)‘c’l‘ec + Oé;Creg; (1)

where « is the regularization strength, and where we use
three different definitions of £,.¢4:

Stability regularization:
Lstavitity = ||f (@) = F(T(2))]]2- )
Transform invariance regularization:
Lirans-ino = ||F(T(@)) = T(f(2))]]2 - 3)

Sparse Jacobian regularization:

Lijacobian = || (f(T(x)) = f(2)) = (T(y) —y)ll2 4
= (f(T(x) =T() = (f(@) =) l2. )

B. Transformations

The image perturbations T'(+) are performed by means of
a linear transformation of the pixel indices ¢ and j,
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where (i/,7’) are the transformed indices, such that
T(z);,; = 4 j. The transformation matrix elements are

(6)
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defined as follows:

zcosa
T = cos(hy)’
zsin(a)
T2 = cos(hy)’
Ty = Sz cos(hy) — szzcosa
’ 2 cos(hy)
2tyzcosa — syzsina + 2t zsina
+ 2 cos(hy) ’
zsinb 0
Ty = :
cos(hy)
zcosb
To2 = cos(hy)’
Ty, = Y cos(hy) — syzcosb
’ 2cos(hy)
2tyzcosb — spzsinb + 2t zsinb
2cos(hy)

Here, we have a = hy—rand b = hy+r, and (s, sy ) is the
image size. The formulation assumes that the image origin
is in the corner of the image, thus incorporating a trans-
lation of the image center to the origin before performing
the image transformations and translating back afterwards.
(tz,ty), 7, 2, and (hg, hy) are translation offset, rotation an-
gle, zoom factor, and shearing angles, respectively. All the
transformation parameters are drawn from uniform distribu-
tions, in a selected range of values as specified in Table 1.

Table 1. Ranges of transformation parameters.

Parameter Min Max
Translation -2 px 2 px
Rotation -1° 1°
Zoom 0.97x 1.03x
Shearing -1° 1°
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C. Implementation

The transformations in Section B and the loss formula-
tions in Section A can be implemented with little modifi-
cation of an existing CNN training script. An example im-
plementation is provided in Listing 1, using Tensorflow. It
evaluates the CNN on the input image x and the transformed
image 7T'(x) by means of a weight-sharing network.

import numpy as np
import tensorflow as tf

# Other initialization stuff
# The ground truth (bs is batch size)
y = tf.placeholder (tf.float32, [bs, sx, syl)

# Random transformations
ang = np.deg2rad(1.0)

tx = tf.random.-uniform(shape=[bs,1], minval=—2.0, maxval=2.0, dtype=tf.float32)
ty = tf.random_uniform (shape=[bs,1], minv . dtype=tf.float32)
r = tf.random-uniform (shape=[bs,1], minva , dtype=tf.float32)
z = tf.random_uniform (shape=[bs,1], minval=0.97, .03, dtype=tf.float32)
hx = tf.random.uniform (shape=[bs,1], minval=—ang, maxval=ang, dtype=tf.float32)
hy = tf.random_uniform (shape=[bs,1], minval=—ang, maxval=ang, dtype=tf.float32)

# Transformation matrix
a=hx—r

b hy + r

T1 = tf.divide(z*tf.cos(a), tf.cos(hx))

T2 = tf.divide (z*tf.sin(a), tf.cos(hx))

T3 = tf.divide (sx*tf.cos(hx)—sx*zxtf.cos(a)+2*tx*zxtf.cos(a)—sy*zxtf.sin(a)+2*

tyszxtf.sin(a), 2#tf.cos(hx))

T4 = tf.divide (z*tf.sin(b), tf.cos(hy))

T5 = tf.divide (z+tf.cos(b), tf.cos(hy))

T6 = tf.divide (sy*tf.cos(hy)—syszxtf.cos(b)+2%tyszktf.cos(b)—sxszktf.sin (b)+2x%

txxzxtf.sin(b), 2% tf.cos(hy))
T7 = tf.zeros([bs,2], “float32")
T = tf.concat([Tl, T2, T3, T4, T5, T6, T7], 1)

# Perform transformation
Ty = tf.contrib.image. transform(y, T, interpolation="BILINEAR)

# Prepare input x from ground truth y

x = prepare_data(y)

Tx = prepare-data (Ty)

# Model

with tf.variable_scope(”siamese™) as scope:
fx = cnn_.model (x)
# Weight—sharing
scope.reuse.variables ()

fTx = cnn-model (Tx)

# Transformation on prediction

Tfx = tf.contrib.image.transform(fx, T, interpolation="BILINEAR")

# Reconstruction loss
loss = (1.0—alpha)xtf.reduce.mean (tf.square (fx—y))
# Regularization loss
if stability:
loss += alphaxtf.reduce-mean(tf.square (fx—fTx))
elif transform.invariance:
loss += alphaxtf.reduce.mean (tf.square (fTx—Tfx))
elif sparse_jacobian:
loss += alphaxtf.reduce_mean (tf.square ((fTx—fx)—(Ty—y)))

# Train model using the regularized loss

Listing 1. Tensorflow example for formulating regularized loss.

D. Training time

The regularized losses take approximately 2 times longer
to evaluate as compared to training with only the loss
Lree = ||f(2) — yl||2. For the HDR reconstruction applica-
tion, the Sparse Jacobian formulation took on average 1.92
times longer, whereas the transform invariance took 1.99
times longer. The latter is slightly slower since it requires
running the transformation 7'(f(x)) on the reconstructed

image f(z).

E. Experimental setup

The two different applications used for the experiments
are evaluated in the following way:

e In the total loss in Equation 1, we use three different
formulations of L,.4: stability (2), transform invari-
ance (3), and sparse Jacobian (5) regularization.

e The regularization strength is sampled at 12 locations,

;= l~lfr1’i =1,...,12, where [; = 2°~3. This means
that the relative regularization strength, or ratio %,

will double for each point.

e For the perturbed sample T'(x), we use the geomet-
ric transformation specifying the warping from coor-
dinate transformations according to Equation 6. For
the stability regularization we also add one setting
with noise perturbations, T'(x) = = + Az, where
Az ~ N(0,0), and o is randomly selected for each
image, o ~ U(0.01,0.04).

e We complement with a training run using 7'(z) for
specifying naive augmentation, increasing the training
dataset size from N to 2N.

e For each combination of the above, we run 10 individ-
ual trainings, in order to estimate a proper mean and
standard deviation of each datapoint.

In total, the combinations and repeated runs means that
for each of the two applications we perform 500 optimiza-
tion runs.



