Single-frame Regularization for Temporally Stable CNNs
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2 Tested applications

|. Motivation

Example application: colorization

2 Main goal CNN (f) r We use colorization and high dynamic range (HDR) video reconstruction as
Our objective is to produce temporally stable video results when processing — A " example applications.
frames with image-to-image neural networks. (i) We test colorization of faces and HDR reconstruction of artificially

.o . generated frames, sampling at different regularization strengths. We find

Deep neural networks are sensitive beings Trﬂnsform (T) Transform [Tl\l Transform [T that our regularization not only provides a significant improvement in
Convolutional neural networks (CNNs) are highly sensitive to small changes temporal stability, but also in PSNR.
in input. This is evident from previous work on adversarial examples, where (il Applied to state-of-the-art CNNs for colorization and HDR
even pgrceptually indistinguishable changes can result in widely different ~_ reconstruction, the regularization gives a significant improvement in
predictions. CNN () e st temporal stability while preserving the PSNR.
For CNNs used to perform image-to-image mappings of video material, the

sensitivity is manifested in temporal artifacts: flickering, unnatural changes
of local features, etc.

Existing methods are heavy-weight

Existing neural network-based methods for temporal image-to-image
processing often rely on dense motion estimation between frames (optical
flow) for overcoming the above problems. The motion information is used in
training, and/or to filter the output frames. This means that the CNN
architecture needs to be modified, or that extensive post-processing is
required. Also, reliable optical flow is a key element, which is difficult to
achieve in some situations.

Our solution

We propose a regularization technique, in two different formulations, for
stabilizing CNNs in the time domain. It provides a simple strategy for
enforcing stability, with the following advantages:

» Itis light-weight.

» It can be trained without video or motion information.

» It can be applied to any CNN without architectural modifications.

» It can be used for fine-tuning already trained CNNs.
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We consider two different loss regularization formulations, £Teg, for
complementing the visual difference (reconstruction) loss, L,

L= (1 — Oé)ﬁvis =+ Oéﬁreg.

We rely on the transformation function 7°(-) in both of the regularization
formulations, for specifying changes between two consecutive video
frames. The changes are simulated by random geometric transformations.

Regularization formulations

(i) Transform invariance: We want to minimize temporal incoherence, which
can be measured from the differences between frames that cannot be
explained by the motion 7'(x) between the frames,

Lirans-inv = Hf(T(CU)) - T(f(CU))||2

(i) Sparse Jacobian: We consider not only function values, but also partial
derivatives over time, in form of the Jacobian. We use a sparse formulation,
sampling the Jacobian in one well-selected direction 7°(+),

Lijacovian = || (f(T'(x)) — f(x)) = (T'(y) —y) ll2.

Gradient of reconstructed Gradient of ground
frame truth frame

2 Conclusion

Using the proposed light-weight regularization strategy, we are able to
demonstrate substantial improvements in temporal stability while
preserving the PSNR. For smaller datasets, the PSNR is also boosted.

Transform invariance formulation can sometimes give better performance,
while the sparse Jacobian is less sensitive to the regularization strength.

Example application: colorization




