HDR image reconstruction from a single exposure using deep CNNs

- Gabriel Eilertsen,
- Joel Kronander,
- Gyorgy Denes,
- Rafał K. Mantiuk,
- Jonas Unger,

Linköping university Linköping university University of Cambridge University of Cambridge Linköping university

Introduction

- Reconstruction of high dynamic range (HDR) data
- 8-bit input, captured in one exposure
- Model
 - Convolutional neural net (CNN)
 - Auto-encoder
 - ▶ HDR specific design
- Training

2

- ▶ HDR specific loss function
- Large set of collected HDR images
- Pre-training using MIT places dataset
- Evaluation on HDR display

Input LDR image

Introduction

- Reconstruction of high dynamic range (HDR) data
- 8-bit input, captured in one exposure
- Model
 - Convolutional neural net (CNN)
 - Auto-encoder
 - ▶ HDR specific design
- Training
 - ▶ HDR specific loss function
 - Large set of collected HDR images
 - Pre-training using MIT places dataset
- Evaluation on HDR display

Reconstructed HDR image

HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger

6 HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger

HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger

7

HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger 9

Motivation

- Reconstruction of saturated image regions
 - Most prominent feature of HDR images
 - Most HDR applications require this
- Many applications can benefit from HDR
 - HDR display
 - Image Based Lighting (IBL)
 - Post-processing (exposure correction, tone-mapping, glare simulation etc.)
- Majority of images captured with single exposure

Method

14 HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger

15 HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger

+

 \approx

Input HDR image

Final HDR reconstruction

CNN output

lpha

Ground truth HDR

 $1 - \alpha$

+

 \approx

Input HDR image

Final HDR reconstruction

CNN output

Ground truth HDR

Input HDR image

lpha

 $1 - \alpha$

+

 \approx

Input HDR image

Final HDR reconstruction

CNN output

Ground truth HDR

 $1 - \alpha$

+

 \approx

Input HDR image

Final HDR reconstruction

Ground truth HDR

 $1 - \alpha$

+

 \approx

Final HDR reconstruction

CNN output

Ground truth HDR

Final HDR reconstruction

lpha

 $1 - \alpha$

+

 \approx

Input HDR image

Final HDR reconstruction

CNN output

Ground truth HDR

Ground truth HDR

lpha

HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger 22

- HDR reconstruction autoencoder CNN
- Fully convolutional
- Works in different domains of pixel values

Encoder

- VGG16 architecture¹, without fully connected layers
- Processes LDR display values
- Convolution: 3x3 kernels
- Max-pooling for down-sampling
- **ReLU** activation

(1) K. Simonyan and A. Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR abs/ 1409.1556 (2014).

8-bit LDR image

HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger

Decoder

- Log domain processing
- De-convolutional up-sampling: 4x4 kernels
- Kernels initialized for bilinear up-sampling
- **ReLU** activation
- Batch normalization after each layer

Latent representation

Log HDR image

Skip-connections

- Skip-connections from encoder to decoder, at each level of resolution
- Concatenated encoder and decoder layers
- Fusion: 1x1 convolution
- Skip includes domain transformation
- Improves reconstructed details

LDR input

HDR, without skip

HDR, with skip

Loss function

- Loss function separated in illuminance and reflectance terms
- Illuminance
 - Describes global variations
 - Responsible for the high dynamic range
 - Single channel (monochromatic)
 - Estimated from low-pass filtering of luminance
- Reflectance
 - Details and colors
 - ow dynamic range D

$$og(I) = G_{\sigma} * log(L)$$

Assumes no sharp boundaries!

Loss function

 $\mathcal{L}_{IR} = \lambda \sum \left| \alpha \left(log(\hat{I}) - log(I) \right) \right|^2 + (1 - \lambda) \sum \left| \alpha \left(log(\hat{R}) - log(R) \right) \right|^2$

Training data

- HDR image data
 - Mostly online resources
 - 1121 images + 67 videos
- Database
 - Every 10th frame from HDR video sequences
 - In total ~3700 high resolution HDR images
- Training data
 - Augmentation from virtual camera
 - In total ~125K images used in training

Training image

Training data

- HDR image data
 - Mostly online resources
 - 1121 images + 67 videos
- Database
 - Every 10th frame from HDR video sequences
 - In total ~3700 high resolution HDR images
- Training data
 - Augmentation from virtual camera
 - In total ~125K images used in training

Training images

Training data

(1) B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. 2014. Learning Deep Features for Scene Recognition using Places Database. In Advances in Neural Information Processing Systems 27. 487–495.

30

Training

- 2-stage training
- 1st stage
 - VGG16 weights
 - For initializing encoder
 - Trained for classification on Places database
 - Places simulated HDR database (224x224)
- 2nd stage
 - Fine-tuning using the gathered HDR database (320x320)
- ADAM¹ optimizer
- (1) D. P. Kingma and J. Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980
- HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger 31

Results

HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger 36

Reconstruction with real-world cameras Camera: Canon EOS 5D Mark II

Input

HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger

Reconstruction with real-world cameras Camera: Fuji X100S

Input

HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger 40

Reconstruction with real-world cameras Camera: iPhone 6S

Input

HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger

Reconstruction with real-world cameras Camera: iPhone 6S

Input

42 HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger

Reconstruction with real-world cameras Camera: iPhone 6S

Reconstruction with real-world cameras Camera: Unknown

Input

HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger

HDR video reconstruction

- Example video in HDR video player
- Software: Luma HDRv open source HDR video codec
- Frame-by-frame predictions
- Some minor temporal issues

Library and API: <u>http://lumahdrv.org/</u>

Input

- (1) L. Meylan, S. Daly, and S. Süsstrunk. 2006. The Reproduction of Specular Highlights on High Dynamic Range Displays. Color and Imaging Conference 2006, 1 (2006), 333–338.
- 46 HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger

Meylan et al.¹

Input

(1) A. G. Rempel, M. Trentacoste, H. Seetzen, H. D. Young, W. Heidrich, L. Whitehead, and G. Ward. 2007. Ldr2Hdr: On-the-fly Reverse Tone Mapping of Legacy Video and Photographs. ACM Trans. Graph. 26, 3, Article 39 (2007).

Rempel et al.¹

Input

(1) F. Banterle, P. Ledda, K. Debattista, and A. Chalmers. 2008. Expanding Low Dynamic Range Videos for High Dynamic Range Applications. In Proceedings of the 24th Spring Conference on Computer Graphics (SCCG '08). ACM, 33–41.

Banterle et al.¹

Input

Our CNN reconstruction

Image based lighting Reconstruction of environment lighting panorama

Reconstruction

Image based lighting Rendering with reconstructed panorama

IBL with ground truth

IBL

Image based lighting Reconstruction of environment lighting panorama

Input

Reconstruction

Image based lighting Rendering with reconstructed panorama

HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger 53

Subjective evaluation

Setup

- Full pair-wise comparison, forced choice: "Which looks most natural?"
- 15 participants, performed each comparison 3 times
- 25 images, selected randomly from the test set (95 images)
- 90th percentile pixel value anchored to 180 cd/m^2
- Methods
 - LDR image (captured by virtual camera)
 - Ground truth HDR image
 - iTMO method by Banterle et al.^A
 - Our CNN HDR reconstruction
- (A) F. Banterle, P. Ledda, K. Debattista, and A. Chalmers. 2008. Expanding Low Dynamic Range Videos for High Dynamic Range Applications. In Proceedings of the 24th Spring Conference on Computer Graphics (SCCG '08). ACM, 33-41.
- (B) H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs. 2004. High Dynamic Range Display Systems. ACM Trans. Graph. 23, 3 (2004), 760–768.
- HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger 54

- Projector-based HDR display^B
- iPad retina display
- Back-lit by projector
- \implies Dynamic range, 0.1-5000 cd/m²

Subjective evaluation

Subjective evaluation

- Compression artifacts (partly)

Failure cases

Input LDR

60 HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger

Reconstructed HDR

Failure cases

Input LDR

61 HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger

Reconstructed HDR

Failure cases

Input LDR

62 HDR image reconstruction from a single exposure using deep CNNs · G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and Jonas Unger

Reconstructed HDR

Conclusion

- HDR reconstruction from a single exposed LDR image
- Hybrid dynamic range autoencoder
 - Encoder processing LDR display values
 - Decoder reconstructing HDR in log domain
- HDR specific design choices
 - Architecture
 - Training data
 - Optimization
- Quality and robustness confirmed in subjective evaluation

nput LDR image

- Supplementary document
- Web gallery with entire testset and reconstructions
- GitHub repository with source code
 - TensorFlow model for inference
 - Trained parameters
 - Updated with parameters trained with compression

The exposure of the input LDR image in the bottom left has been reduced by 3 stops, revealing loss of information in saturated image regions. Using the proposed CNN trained on HDR image data, we can reconstruct the highlight information realistically (top right). The insets show that the high luminance of the street lights can be recovered (top row), as well as colors and details of larger saturated areas (bottom row). The exposures of the insets have been reduced by 5 and 4 stops in the top and bottom rows, respectively, in order to facilitate comparisons. All images have been gamma corrected for display.

