
Depends: Workflow Management Software for Visual Effects Production

Andrew Gardner∗ Jonas Unger
Linköping University, Sweden

Figure 1: Multiple capture devices (left) are used to scan a real-world photo studio. The resulting data and processing software is organized
by the Depends workflow management application (center), to create a computer graphics rendering of a real-world environment (right).

Abstract

In this paper, we present an open source, multi-platform, workflow
management application named Depends, designed to clarify and
enhance the workflow of artists in a visual effects environment. De-
pends organizes processes into a directed acyclic graph, enabling
artists to quickly identify appropriate changes, make modifications,
and improve the look of their work. Recovering information about
past revisions of an element is made simple, as the provenance of
data is a core focus of a Depends workflow. Sharing work is also
facilitated by the clear and consistent structure of Depends. We
demonstrate the flexibility of Depends by presenting a number of
scenarios where its style of workflow management has been essen-
tial to the creation of high-quality results.

CR Categories: I.3.8 [Computer Graphics]: Applications—;
H.4.1 [Information Systems Applications]: Office Automation—
Workflow management;

Keywords: visual effects pipeline, directed acyclic graph, user
interface, artist workflow

1 Introduction

Visual effects production environments are an ever-changing whirl-
wind of complex dependencies. The number of individuals working
together and the level of detail required for a photorealistic film se-
quence are staggering, and the amount of data generated to achieve
photorealism continues to grow. Artists must create content quickly

∗e-mail:{andrew.gardner, jonas.unger}@liu.se

and efficiently, as turnaround times are often short. These chal-
lenges require intense coordination and nimble, efficient operation
from the studio as a whole, as well as from each individual within
the pipeline.

A single effect, rig, or environment may consist of dozens or hun-
dreds of different elements brought together to form a final look.
Multiple processes may be used in coordination to generate these
elements. Also, elements are rarely complete; new camera angles
with which to view the data may expose flaws in the approved look,
or tastes may simply evolve. The ability to quickly change an ele-
ment’s appearance is as important as the ability to revert to an old
look. This ever-present uncertainty ensures that individuals work-
ing in a visual effects production environment must be organized
and efficient.

To this end, we have developed an open source workflow manage-
ment tool named Depends, tuned specifically to address the needs of
visual effects artists. As with many workflow managers, Depends
strives to maintain ease and clarity of use. It does this by providing
an interface to organize nearly any command-line application into a
directed acyclic dependency graph (DAG), concurrently maintain-
ing a list of generated data as a scenegraph. It is lightweight and
extensible, with a focus on scalability. It includes functionality to
preserve the provenance of data, allowing users to quickly recall
configurations and artistic decisions long after the work has been
done. Depends is developed using the Python programming lan-
guagge and the open-source PySide bindings for the Qt windowing
toolkit. It is therefore highly portable and simple to run.

2 Workflow Management Systems

Workflow management systems, and the methods they employ, ex-
ist in many computing contexts. Tools that build dependency graphs
to synchronize a system’s components, such as the UNIX make
build system, have historically proven effective. Various aspects
of the UNIX philosophy such as modularity, composition, and sep-
aration [Raymond 2003] have made shell scripts a useful work-
flow management tool, but the complexities of fast-paced visual
effects environments often necessitate software that adds organiza-
tional tools on top of established methods.

Katana, the software package released commercially by The
Foundry, is an example of a workflow management application that



Figure 2: The Depends user interface with the dependency graph
visible on the left, the scenegraph in the lower-right, and the se-
lected node’s attributes in the upper-right.

is used for lighting and look development in visual effects produc-
tion. Katana uses a dependency-graph structure to clearly and ef-
ficiently bring assets together. It scales nicely with various tech-
niques to cull and display data, and it’s relatively simple to get
working in existing visual effects pipelines. It is currently, however,
focused on lighting and look development instead of the general ex-
ecution of command-line programs. Depends is heavily inspired by
Katana, but is tuned more to other aspects of production.

The scientific community has also developed workflow manage-
ment software in recent years. Software packages such as Discov-
ery Net [Rowe et al. 2003], the Taverna Workbench, and the Kepler
Scientific Workflow System are all examples of how research sci-
entists are able to use workflow management to create and share
results on an individual level or for departments across different in-
stitutions. We found these programs to be inspirational, but quite
tightly coupled with the fields they were developed in. Depends
has been designed to incorporate ideas from the scientific workflow
community, but adjusted to fit the unique challenges of visual ef-
fects production.

3 Depends

Depends is a workflow management software package [Figure 2]
that organizes the execution of existing command-line programs
into a directed, acyclic graph (DAG). Each command-line program
is wrapped using a simple Python interface into a DAG node called
a process node. The process node contains a series of typed inputs,
typed outputs, and general attributes. An entire DAG of process
nodes, their connections, and their attributes is henceforth referred
to as a workflow. Depends executes workflows by writing execu-
tion scripts that run programs in the order they are described in the
dependency graph.

A scenegraph, or collection of existing data at any point in the DAG,
is tracked by Depends. This scenegraph is not as complex as in
other workflow management software such as Katana, but is essen-
tial in understanding what data are available at each point in the
dependency chain.

To maintain a smooth, consistent flow of information through the
DAG, Depends allows the user to define collections of data that
represent a single idea or asset. We call these collections of asso-
ciated data, data packets. Data packets bind a set of related files
together, making it easy for programs in the dependency graph to
check and understand the information presented to them.

Figure 3: An example of a directed acyclic graph in the Depends
user interface. Process execution order, information flow, and data
presence are visible at a quick glance.

The data types and program DAG nodes in Depends are easily con-
figured by a novice Python programmer, but nearly any artist famil-
iar with a dependency graph interface is capable of using Depends
to manage her workflow. A single programmer can therefore spend
a short time configuring Depends, and those who are not familiar
with programming can use it to organize their workflows.

3.1 The Directed Acyclic Graph

Depends uses a directed acyclic graph [Cormen et al. 2001] [Fig-
ure 3] to organize the execution of nearly any command-line soft-
ware. The DAG structure clarifies the order in which programs will
be executed. The DAG also helps the user to deduce which pro-
grams depend on other programs and which programs can run in
parallel. The Depends graph is extensible, as it enables programs
and their DAG nodes that didn’t exist when the workflow was cre-
ated to be incorporated at any time.

On a basic level, Depends tracks which nodes have already been
run and no longer need execution. If all the data for all the process
nodes exists on disk, and one of the parameters of a node has been
changed, the DAG makes it clear which nodes depend on the new
data and must be re-executed. This information is essential to man-
aging complex workflows, and Depends features a number of user
interface tools to quickly update attributes and re-run the workflow.

Further advantages of the Depends DAG user interface include the
ability to select a process node and see which nodes it depends on,
a list of which nodes can act as inputs to your node of choice, and if
those nodes need to be executed or if their data are already present.
Similarly, removing an operation in the middle of the DAG alerts
the user to which operations may no longer have data available to
them.

3.2 The Scenegraph

The Depends scenegraph [Figure 4] is a visual representation of
what data are available at any location in the dependency graph.
Scenegraphs are often associated with object transforms and the re-
lationships between objects in a given space. Depends, however,
presents the data as a flat hierarchy, showing the user exactly what
is available and what can be ingested by a selected process node.
This allows Depends to work with processes other than those that
manipulate objects in three dimensional space. While this reduces
the scenegraph’s functionality in the context of lighting and look
development, we have found it allows Depends to be more consis-
tent and applicable in other contexts.



Figure 4: An example of a scenegraph in the Depends user in-
terface. Each entry represents data constructed by the DAG up to
this point. The data packet type is written in green (ingestible by
this node and present on disk), red (ingestible by the node and not
present on disk), or grey (incompatible with this node). A unique
string for the node name and output are also present.

3.3 Data Packets

A data packet is the name given to a collection of data that repre-
sents a single asset to be passed from process node to process node
in the DAG. Bundling various files together simplifies the user ex-
perience of tracking data on disk. It also provides the Depends ex-
ecution engine with the ability to type-check data flowing between
process nodes, as nodes are defined with typed inputs and outputs.

Depends allows data packet definitions to inherit from other data
packet definitions, letting process nodes ingest a variety of closely-
related data as input. For example, a process node that filters an
image would be designed to take an image data packet as input.
A data packet representing a light probe image, which contains an
image and a three-dimensional transform, should also be accepted
by the image filter process node. Depends makes this possible by
allowing the light probe data packet to inherit from the image data
packet. This logical relationship is handled internally in the De-
pends architecture, simplifying workflow construction for the user.

Data packets are defined as a theoretical wrapper around general
data on disk. These wrappers are constructed and used by Depends,
but also may be useful outside the Depends user interface. To this
end, the data packet definitions can be exported alongside the data
they represent, and other software can refer to groups of data using
the same organizational structures.

Finally, if a studio already has a method for grouping important
information together, a single data packet type can be defined and
all nodes can be configured to send and receive the type. File for-
mats such as Alembic or GTO, are examples of ”bucket” files that
may encompass the same functionality as a data packet definition.
Wrapping all Alembic files with a single Depends data packet and
passing those between process nodes is simple and effective.

4 User Interaction

Depends includes a number of other features that enhance its ability
to organize an artist’s workflow, while maintaining a flexible and
robust interface. Depends takes great care to ensure that each of
these features are powerful, but as lightweight as possible, as we
have found too many automated features limit an artist’s ability to
do exactly what she wants.

One of the primary benefits of Depends workflow management is
that the user does not write algorithms within the Depends infras-
tructure, but instead wraps existing software in operational units, or
nodes, that can be organized into a DAG. Any software, commercial

Figure 5: The Depends user interface communicating with the
commercial modeling package Maya to visualize and manipulate
a point-cloud.

or homegrown, with a command-line interface can be incorporated
into a Depends workflow. Shell scripts or collections of Python
scripts are commonly used for this type of pipeline management in
visual effects. The Depends user interface attempts to maintain the
power of these scripts, but clarify complicated workflows.

Since Depends tracks data and does no data manipulation itself, it
maintains a very small memory footprint. Each command-line ap-
plication in a workflow is expected to manage its own memory. De-
pends, however, enables the user to configure portions of the DAG
to run in parallel. A great deal of parallel activity may create re-
source conflicts. If simultaneous processes use too many resources
on a host, the parallel assignments can be adjusted.

Depends contains a network socket layer that allows it to commu-
nicate with any external package that contains a similar interface.
This permits the user to select a data element in the Depends scene-
graph and quickly view and manipulate it in a 3d package such as
Autodesk’s Maya [Figure 5]. Results can then be transferred back
into the Depends workflow, allowing for, e.g., iterative improve-
ment of coarse geometric alignment and other manual tasks.

Depends maintains a list of internal variables that can be referenced
in any attribute field of any process node. A similar mechanism is
used to reference environment variables from the shell Depends is
run from, allowing workflows to be moved from place to place on
a file system without needing to change dozens of individual pa-
rameters. Automated workflow wedging is also built in to Depends
using this variable mechanism, as variables can assume numbers in
a range, and portions of the workflow can be executed over these
ranges.

Depends provides multiple options to preserve the history of its
workflow files and the corresponding history of its results. First,
it saves projects as plaintext JSON files that can be viewed and
edited in an external text editor. These text-based workflow files
can be tracked using a revision control package. The Depends user
interface also offers a simple way to automatically increment the
workflow version upon save, encouraging users to form habits that
promote easy tracking of data provenance.

Executing entire workflows can be resource intensive. To avoid
costly errors, Depends performs a series of checks before each time-
consuming workflow execution. These include insuring all input
files and output directories exist, and confirming all input and out-
put types match. Hooks are available that run immediately before
and after a process node’s primary execution function. These al-



Figure 6: A rendered image of synthetic furniture composited into
a virtual photo set constructed from geometric scans, photographs,
reflectance measurements, and high-dynamic-range video of a real-
world environment.

low for user-customizable sanity checks and tabulation of results
for command-line programs that write an unknown number of files
to disk.

Depends provides the ability to replace the default file browser with
a browser custom-tailored to the way a studio accesses its data. This
is useful for visual effects houses that store and retrieve data using
asset management databases that require more than simple path-
names to refer to files, or various other types of custom file refer-
ences.

Workflow execution can also be tailored to the needs of a studio. In
its default configuration, Depends constructs execution sequences
as shell scripts that can be run on a single machine. An experi-
enced programmer, however, can write a plugin to send the execu-
tion information to a render farm manager, such as Pixar’s Tractor
or PipelineFX’s Qube, to allow these specialized programs to man-
age the complex tasks of parallelization and load management.

Finally, Depends contains much of the user interface functionality
artists are accustomed to. Undo and redo are robust and oriented
towards losing as little work as possible. Documentation can be
included for node attributes and quickly accessed by a user while
constructing a workflow. File names in the user interface can have
their versions incremented without having to enter text in multiple
fields. And everything can be run from the command-line with-
out having to open the UI, making it easy to create and execute a
workflow’s execution script without a graphics display.

5 Customization and Development

Depends can be used by artists with no programming experience
or developers with Python skills. Using the program to construct
workflows can be done by nearly anyone familiar with computer
graphics user interfaces or dependency graphs. Creating node and
data packet definitions, however, requires a rudimentary under-
standing of the Python programming language, and writing new ex-
ecution engine backends or communicating with external programs
are more fit for a developer experienced in these fields.

The freely-available Depends source code is developed to be as leg-
ible as possible. The Python codebase is relatively small and mod-
ular, and uses basic language functionality to do the majority of its
tasks. The features of the program that are designed to be plug-

Figure 7: Synthetic furniture rendered into a virtual environment
reconstructed by the VPS project.

gable are separated from the rest of the source, and the entry points
are designed to be clear. Depends ships with a handful of user in-
terface commands to save development time, such as reloading all
nodes from disk without having to restart the program and tracking
exceptions in process nodes.

Creating new data packet definitions is a simple matter of inher-
iting from a Python base class and adding a series of identifiers
to a list owned by the base. Nodes that load these data packets
off disk are automatically generated from the data packet definition
classes at runtime, so no additional programming is needed. Pro-
cess nodes require four functions to be overridden, three defining
the input types, the output types, and the attribute names, and the
fourth defining how the inputs and attributes are passed to the ap-
propriate command-line program.

Data packet and node definitions are loaded off disk at startup us-
ing a shell environment variable that defines the location of each.
This makes it simple to swap entire sets of data packet and process
node definitions for different shows or shots that may be worked on
concurrently.

Communication with external programs requires the developer to
open a network socket in the external program and wait for com-
mands to be issued from a process node in Depends. The format of
the command varies from external program to program, but exam-
ples of each side of the communication mechanism for Autodesk’s
Maya are available with the source code download.

6 Example Use

We believe the core principles of Depends make it useful in a wide
variety of situations. The following describes two of our own
projects that Depends has improved and offers two additional ex-
amples in the context of visual effects that may also benefit from
Depends.

Virtual photo sets (VPS) - We present a process we refer to as the
virtual photo set [Unger et al. 2013a; Unger et al. 2013b]. The VPS
toolchain has been developed in collaboration with IKEA Com-
munications AB (the maker of the IKEA catalog), and is a com-
pletely data driven pipeline for measurement and reconstruction of
real world lighting environments and material characteristics (re-
flectance, color, texture etc.), enabling robust, photo-realistic prod-
uct visualization for catalogs and web applications with predictable
results. This work is very similar to set reconstruction in the visual
effects context.

An overview of the VPS pipeline implemented within Depends can
be split into three steps:

1. Scene capture - A scene is captured using a set of input de-
vices typically including: high resolution digital SLR cam-
eras, HDR images and video, a laser scanner, and a spec-
trophotometer.



2. Data processing and scene reconstruction - The captured data
is processed using computer vision algorithms as well as in-
teractive methods, so an accurate model of the scene can be
reconstructed with full artist control.

3. Image synthesis - The reconstructed environment consists of
a geometric model textured with HDR-video frames and can
be populated with virtual objects and directly used for image
based lighting renderings.

A typical VPS user scenario is illustrated in Figure 1. The real
world scene, a photo studio, is captured using: a Faro Focus 3D
laser scanner, a sequence of raw images and 360◦ HDR panoramas
from a digital SLR camera, a set of HDR-video sequences cap-
tured using a prototype multi-sensor HDR-video camera developed
in our lab [Kronander et al. 2013b; Kronander et al. 2013a; Unger
and Gustavson 2007; Unger et al. 2004], and a set of multi-spectral
measurements of selected surfaces in the scene, captured using a
PhotoResearch PR-650 Spectrascan.

Input nodes in the workflow load the data from the different cap-
ture sources. The merged laser-scan point clouds are decimated
and tessellated, and in most cases are also manually adjusted. We
use Maya through the network socket layer as the user interface
for manual geometry adjustments. The SLR and HDR-video im-
ages are calibrated using process nodes for shading correction and
HDR reconstruction, and then transformed to a common radiomet-
ric space using the spectrophotometer measurements. Using struc-
ture from motion (SfM) nodes [Sinha et al. 2009; Furukawa et al.
2009], and interactive alignment, the SLR and HDR images are
aligned to the tessellated point-clouds. After camera calibration
and registration, the image data is projected onto the recovered ge-
ometry.

The result is a reconstructed geometric proxy model representing
the scene with re-projected HDR textures. The scene model can be
populated with virtual objects and rendered using advanced image
based lighting as shown in Figure 1 (right). Additional examples
are shown in Figure 6 where an environment has been recovered
and populated with virtual furniture (top) to produce photo-realistic
renderings (bottom), and in Figure 7.

BRDF measurement and parameter fitting - In our second ex-
ample, we have created a Depends workflow for capture of Bi-
Directional Reflectance Distribution Functions (BRDFs). As il-
lustrated in Figure 8, we use Depends nodes to: control the cam-
era based capture hardware [Eilertsen et al. 2011], calibrate the
input data, and fit BRDF model parameters such as Cook and Tor-
rance [Cook and Torrance 1982], Ward [Ward 1992], Ashikmin and
Shirley [Ashikhmin and Shirley 2000], and Löw et al. [Löw et al.
2012].

The capture hardware, see Figure 8 (top), is a gonioreflectome-
ter with two arms, allowing a light source and a camera to move
freely over the hemisphere above a material sample. The software
that controls this device has been wrapped by a process node that
presents the user with an interface for controlling the angular sam-
ple density and camera exposure. The BRDF is measured by illu-
minating the physical material sample from a set of angles over the
hemisphere, and for each incident light angle measuring the outgo-
ing radiance distribution. The captured images are processed by an
image calibration node where shading correction, radiometric scal-
ing, and other operations are performed. These results are then fed
into a process node for numerical fitting of BRDF model parameters
to the captured data. Finally, the fits can be inspected by comparing
the graphs of the fitted BRDF models to the original data, by visu-
alizing the lobes, or by rendering simple geometry as illustrated in
Figure 8 (bottom).

Multispectral
illumination

Calibrated
monochrome camera

Material sample

Multi-spectral illumination (14 bands)

Imaging sensor

Material sample

BRDF capture device

Multi-spectral image data

Image data 
calibration 

BRDF parameter 
�tting

Visualization

Figure 8: The Depends workflow uses nodes to control our multi-
spectral BRDF measurement hardware, process and calibrate the
output image data, fit the parameters of BRDF models, and to visu-
alize the results.

Fluid surfacing - A potential use for Depends in a visual effects
context is to assist artists in generating realistic surfaces of ani-
mated fluids. Fluid surfaces in visual effects often begin with an-
imated particles, which are converted to level set representations,
then transformed into polygons. One way to approach the transfor-
mation from particles to polygons is to create a large program with
a complex user interface and a fixed data-transformation pipeline.
This often generates great results, but may limit the flexibility of
a talented fluid surfacing artist. The Depends methodology sug-
gests the surfacing pipeline be split into multiple command-line
programs that do very specific things. An artist can create a work-
flow in Depends then quickly reconfigure the workflow as new ideas
or techniques come to light. Ideas can be quickly tested by rewiring
the DAG to, for example, cause input particles to affect output ge-



ometry or filter level sets in multiple steps and combine the results
to form a final volume. Managing a workflow using Depends gives
the artist a great deal of control, as operational changes can be made
without any input from a specialized tool programmer.

Camera calibration - Visual effects artists who calibrate cameras
may also find Depends useful. Camera calibration often requires
a collection of photographs of a fixed pattern. Tracking data for a
single camera with a single lens is relatively straightforward, but
once multiple cameras and multiple lenses are introduced, manag-
ing which calibration is associated with which lens, which camera
body, and at which focus can be challenging. We’ve found Depends
to work well for quickly recalling what information is associated
with a given camera and the which inputs led us to derive that in-
formation.

7 Conclusion

Depends, the open source workflow management software, has
been instrumental in reconstructing virtual photo sets from large
collections of input data. In our experience, it has allowed us to
organize data in a clear, consistent, and concise manner. It has also
helped us revisit our projects later and quickly understand which
inputs were used to generate our final renders. We have found it
useful when sharing results with coworkers both in and outside our
group, and believe the same results are possible in various visual
effects contexts. We also hope releasing the source encourages ad-
ditional development, helping Depends to grow in scope and utility.

Acknowledgements

We would like to thank our mentors and coworkers, Mike Root, Jim
Hourihan, Scott Singer, and Jonathan Ramos for learning and cod-
ing with us while trying to make sense of the beautiful jumble that is
visual effects production. Thanks also to Sony Pictures Imageworks
and the Foundry for developing and releasing Katana, an inspiring
piece of software that we anticipate will continue to grow, improve,
and influence visual effects production well into the future. And fi-
nally, to the University of Linköping, for the support and belief that
workflow management will benefit us all. This project was funded
by the Swedish Foundation for Strategic Research (SSF) through
grant IIS11-0081, Linköping University Center for Industrial Infor-
mation Technology (CENIIT), and the Swedish Research Council
through the Linnaeus Environment CADICS.

References

ASHIKHMIN, M., AND SHIRLEY, P. 2000. An anisotropic phong
brdf model. Journal of Graphics Tools 5, 2, 25–32.

COOK, R. L., AND TORRANCE, K. E. 1982. A reflectance model
for computer graphics. ACM Transactions on Graphics 1, 1, 7–
24.

CORMEN, T. H., STEIN, C., RIVEST, R. L., AND LEISERSON,
C. E. 2001. Introduction to Algorithms, 2nd ed. McGraw-Hill
Higher Education.

EILERTSEN, G., LARSSON, P., AND UNGER, J. 2011. A versatile
material reflectance measurement system for use in production.
In Proceedings of Sigrad2011.

FURUKAWA, Y., CURLESS, B., SEITZ, S. M., AND SZELISKI,
R. 2009. Reconstrucing building interiors from images. In
Proceedings of the IEEE International Conference on Computer
Vision, 80–87.

KRONANDER, J., GUSTAVSON, S., BONNET, G., AND UNGER,
J. 2013. Unified HDR reconstruction from raw CFA data. In
Proceedings of the IEEE International Conference on Computa-
tional Photography.

KRONANDER, J., GUSTAVSON, S., BONNET, G., YNNERMAN,
A., AND UNGER, J. 2013. A unified framework for multi-
sensor HDR-video reconstruction. Accepted for publication in
Signal Processing: Image Communications.

LÖW, J., KRONANDER, J., YNNERMAN, A., AND UNGER, J.
2012. BRDF models for accurate and efficient rendering of
glossy surfaces. ACM Transaction on Graphics 31, 1 (January),
9:1– 9:14.

RAYMOND, E. S. 2003. The Art of UNIX Programming. Pearson
Education.

ROWE, A., KALAITZOPOULOS, D., OSMOND, M., GHANEM,
M., AND GUO, Y. 2003. The discovery net system for high
throughput bioinformatics. Bioinformatics 19, suppl 1, 225–231.

SINHA, S. N., STEEDLY, D., AND SZELISKI, R. 2009. Piecewise
planar stereo for image-based rendering. In Computer Vision,
2009 IEEE 12th International Conference on, 1881 –1888.

UNGER, J., AND GUSTAVSON, S. 2007. High-dynamic-range
video for photometric measurement of illumination. In Proceed-
ings of Sensors, Cameras and Systems for Scientific/Industrial
Applications X, IS&T/SPIE 19th International Symposium on
Electronic Imaging, vol. 6501.

UNGER, J., GUSTAVSON, S., OLLILA, M., AND JOHANNESSON,
M. 2004. A real time light probe. In In Proceedings of the 25th
Eurographics Annual Conference, vol. Short Papers and Interac-
tive Demos, 17–21.

UNGER, J., KRONANDER, J., LARSSON, P., GUSTAVSON, S.,
LW, J., AND YNNERMAN, A. 2013. Spatially varying image
based lighting using HDR-video. Computers & graphics 37, 7,
923–934.

UNGER, J., KRONANDER, J., LARSSON, P., GUSTAVSON, S.,
AND YNNERMAN, A. 2013. Temporally and spatially vary-
ing image based lighting using HDR-video. In Proceedings of
EUSIPCO ’13: Special Session on HDR-video.

WARD, G. J. 1992. Measuring and modeling anisotropic reflection.
SIGGRAPH ’92 26, 2, 265–272.


